PEEKO-COMPUTER

User Guide

Copyright © Acornsoft Limited 1984

First published in 1984 Acornsoft Limited

FIRST EDITION

This booklet downloaded from Acorn Electron World (http://www.acornelectron.co.uk)

Acornsoft Limited, Betjeman House, 104 Hills Road, Cambridge CB2 1LQ.

Telephone (0223) 316039

1 Getting Started

Introduction

The Acornsoft Peeko-Computer is a computer within a computer. It operates in a very similar way to the 6502 microprocessor which is at the heart of your Electron, and it can be programmed using many of the special instructions used to program a genuine 6502.

The advantage of the Peeko-Computer is that its memory is displayed on the screen of your TV or monitor. As you enter or run a program you can see exactly what is happening to the contents of the memory. This makes programming easier to learn and understand, and simplifies the correction of faulty programs.

The chapters of this manual are built around example programs which demonstrate useful programming techniques and illustrate the use of the Peeko-Computer's commands and instructions. A full list of these commands and instructions is given at the end of the manual and on the Reference Card; you may find it helpful to refer to this list whilst reading the manual.

Demonstration programs

The following demonstration Peeko programs are provided on the cassette containing your Peeko-Computer:

COUNT

FACTOR

COPY

ADD

PRIMES

To load and run these programs, first load and run the Peeko-Computer itself and then follow the procedure on page 14.

Loading the Peeko-Computer program

Your computer, TV or monitor and cassette recorder should be connected as described in the Acorn Electron User Guide, chapter 2.

Put the cassette containing the Peeko-Computer program into your cassette recorder. Make sure it is fully rewound.

Then type CHAIN "PEEKO"

And press RETURN. When you see the message 'Searching' press the PLAY button on your cassette recorder.

After a few minutes you will see a screen similar to the one shown below. If your cassette recorder does not have automatic motor control, press the STOP button.

[image: image1.png]

Understanding the screen

The main part of the screen, the part with the 'boxes' containing numbers, represents the memory of your Peeko-Computer. The technical term for each of these boxes is a location. Each location contains a byte of information. The Peeko-Computer has 80 of these locations enabling it to store up to 80 bytes, and each byte can be any single digit from 0 to 9. When the Peeko-Computer is first loaded, all the bytes are set to zero.

(Your Electron's memory can hold about 64000 bytes and each byte can be a number, or a letter, or a special character such as * or $).

Each location in the Peeko-Computer's memory has an address, which is a two-digit number between 00 and 79. The second or units digit of the address is known as the low-order address digit, it is shown in the row marked L above the memory. The first or tens digit of the address is known as the high order address digit; it is shown in the column marked H at the side of the memory. To work out the address of a location, look first at the high-order digit in the same row and then the low-order digit in the same column.

The light rectangle containing a dark byte is the Peeko-Computer's cursor. It shows you the 'current' location; the location where the next byte typed on the keyboard will be entered, or the location that the Peeko-Computer has reached when running a program. In the screen illustrated above, the cursor is at location 42.

Above the low-order address digits are three numbers marked ACC (for 'Accumulator'), CARRY and ZERO. These are used during the running of programs, as will be explained later.

In the top corners of the screen are the words READY and RUN. When the Peeko-Computer is first loaded, and at other times when it is 'ready' to accept instructions, READY is inverted. Whilst a Peeko program is being run, RUN is inverted.

The final information on the screen is a group of characters at the centre of the top line. These are 'instruction mnemonics'; their meaning will become clear when we start programming the Peeko-Computer.

Entering information

Exercise 1

To get a feel for entering information into your Peeko-Computer, try pressing any of the number keys on your keyboard. Notice that the number is entered in the current location, and that the cursor automatically moves on to the next location.

Most of the non-numeric keys are ignored by the Peeko-Computer. However a few give particular commands, as you will see later. If you press a command key by mistake, pressing ESCAPE will usually enable you to continue normally.

CAUTION: Pressing key P commands the Peeko-Computer to print out the contents of its memory. If you do not have a printer connected to your Electron, pressing P may cause the program to 'hang'. To recover, press ESCAPE.

Notice that you can also move the cursor by using the four arrow keys at the right hand side of the keyboard.

Clearing the memory

It is not essential to clear the Peeko-Computer's memory before entering a new program. You can tell the Peeko where a program ends and it will ignore everything after that point.

However, irrelevant information can be confusing, so it is probably a good idea to clear the memory before entering a new program. You can do this in two ways.

First, you can hold down the zero key until all the memory locations have returned to zero.

Alternatively, you can take advantage of the fact that nine areas of the Electron's memory are available to you for storing Peeko programs. When the Peeko-Computer is first started, each of these memory areas contains a 'blank program' and you can clear the Peeko's memory by 'loading' one of them. With READY inversed, press L (to load) and then one of the numbers from 1 to 9 (to show which memory area you want to load from).

(As the memory areas are all blank initially, it doesn't matter which you choose, but it is a good idea to keep one area, for example area 9, permanently blank so that you can use it to clear the Peeko's memory in this way.)

Exercise 2

Clear the Peeko-Computer's memory using both of these methods.

2. Adding two single numbers

This chapter explains the technique for adding together two single-digit numbers using the Peeko-Computer. At the same time it shows how Peeko programs are constructed and run.

Instructions
Every computer program consists of a series of instructions, and a Peeko-Computer program is no exception. The instructions that can be used in a program depend on the programming language chosen; the Peeko is programmed using twenty of the most useful instructions available for programming the 6502 microprocessor.

The instructions that will be used to add the numbers together are these:

CLC

LDA

ADC

BRK

You can look up the meaning of these commands in the Reference section of this booklet. They will become clearer when you see how they work within the program.

Entering instructions
You will recall that the Peeko-Computer only allows bytes to have values from 0 to 9, so that alphabetic instructions cannot be entered into the computer directly. Instead, each instruction is given a single digit code which the Peeko-Computer interprets as the instruction. As you can see from the Reference section, the standard codes for the instructions to be used in this program are:

	Mnemonic
	Code

	CLC

LDA

ADC

BRK
	3

1

4

0

You will have noticed that some instructions refer to particular memory locations. The Peeko-Computer is told which location to use with an instruction by following the instruction code with the two-digit address of the location. However, because of a peculiarity of the 6502 microprocessor (and hence of the Peeko-Computer), location addresses are always given in Peeko programs with the low-order address digit first.
For example, the full code for the instruction:

LDA 70

Which means: 'Load the Accumulator with the value in location 70' is:

107 (not 170)

Entering a program

Peeko programs always start at location 00. When a program is run the computer usually executes instruction codes sequentially going from location 00 to 01, 02, 03 and so on, until it reaches a BRK instruction.

To enter a program you must return the cursor to location 00. You can do this by using the arrow keys. Alternatively, press the key for letter O (for Origin).

Then enter the program by typing in the appropriate codes one after another. The full code for the program to add two numbers together is:

	Mnemonic
	Code

	Mnemonic

	00

01

04

07
	3

107

417

0
	CLC

LDA 70

ADC 71

BRK

(The locations are to help you check that you have not missed a code; you do not type them in.)

When you have entered the program your Peeko-Computer's memory should look like this:

[image: image2.png]

You may have noticed that, as you entered the program code, the appropriate instruction mnemonics appeared in the centre of the top line of the screen. If you are in the middle of an instruction the mnemonics also prompt you for the next code required. For example, after typing 1 you see:

LDA ■■

showing that you are giving the 'load Accumulator' command and that the computer now needs the address of the location from which it should load the value. After you type the low-order digit 0 you see:

LDA ■0

Showing that the computer needs the high-order digit.

Notice that in the instruction mnemonics, location addresses are given in the normal order: 'tens' digit first, 'units' digit second.

Checking a program

Once you have entered your program you should check it to ensure that it is correct.

Return the cursor to 00 by pressing the letter O. The top line of the screen displays the mnemonic of the first instruction in the program (in this case CLC).

Then press the key N (for Next instruction). Each time you press N the cursor moves to the start of the next instruction in the program, and the mnemonic of the instruction is shown at the top of the screen.

Check the mnemonics of the four instructions in this program, ensuring they are exactly as shown in the previous section. If they are not, amend the code by retyping it correctly.

(Notice that you can also use the arrow keys to step through the program. However, this moves the cursor to the next location, not the start of the next instruction. The computer cannot work out when it is in the middle of an instruction and so will show you some strange mnemonics. Ignore any mnemonics shown on the screen except when the cursor is at the start of an instruction.)

Running a program

The program you have entered adds together the two numbers that it finds at locations 70 and 71. Before running the program, enter the numbers that you want to add in 70 and 71. To start with, choose numbers with a total less than 10; say, 3 in 70 and 4 in 71.

To start the program, press the Space Bar. Notice two things. The cursor has moved to location 00; and RUN at the top right of the screen is now inverted instead of READY, to show you that the program is running.

Now each time you press the Space Bar the cursor moves to the start of the next instruction and the mnemonic of the instruction is shown at the top of the screen. This is the same as using N. The difference is that this time, pressing the Space Bar makes the program execute the instruction as well as displaying it, like this:

	Instruction
	Action

	CLC
	The CARRY is set to zero; though of course if it was already zero you will not see any change.

	
	

	LDA70
	The value from location 70 is copied to the Accumulator.

	
	

	ADC71
	The value from location 71 is added to the value in the Accumulator.

	
	

	BRK
	The program is stopped. Notice that READY is now inverted in place of RUN, showing that the Peeko-Computer is ready to accept more instructions or commands.

Step through the program using the Space Bar, checking that the Peeko-Computer carries out each action as described above.

Then run the program again, using two numbers which add up to more than 10; say, 6 and 7. Notice two things:

1. The LDA instruction replaces any existing value in the Accumulator by the new value;

2. After executing the ADC instruction, the Peeko-Computer puts the 'units' part of the results in the Accumulator and a 1 in CARRY, just as you would if you were doing the addition by hand:

	
	 6
	

	
	+ 7
	

	
	 3
	

	carry
	 1
	

Now run the program a few more times, adding together different pairs of numbers. To save having to step through every instruction each time, you can give the Go command by pressing G while READY is inverted. This makes the Peeko-Computer run the program automatically, starting with the instruction at 00 and executing each instruction in turn until it meets BRK. (For long programs you can also press F, for Fast execution.)

Errors in programs

The only time the Peeko-Computer cannot understand an instruction is if it includes a location greater than 79; for example, 158 meaning LDA 85.

When the Peeko-Computer tries to execute an instruction like this the micro bleeps and READY changes briefly to ERROR. Then the cursor moves to the start of he offending instruction to enable you to correct it.

Saving a program

When you are satisfied that your program is working correctly you may want to save it so that you can use it again later.

With READY inverted, press S (for Save). Then press one of the keys 0 to 9 to tell the Peeko-Computer where the program is to be saved.

If you press a key from 1 to 9 the program is saved in one of the nine areas of the Electron's memory put aside for Peeko programs. You can retrieve the program later by pressing L and the same number key. However, remember that if you turn off your Electron or press BREAK, these saved programs will be lost.

If you press key 0 the program is saved to cassette.

Type the name that you want to give to the file containing the program and press RETURN. The Peeko-Computer displays the message RECORD then RETURN.

Make sure that you are at the start of a blank section of tape, and make a note of the setting of the cassette counter. Then set your recorder to record, and press RETURN.

(For more advice about saving on to cassette, see the Acorn Electron User Guide, chapter 9.)

When your program has been saved the mnemonic of the instruction indicated by the cursor reappears at the top of the screen.

Loading a program

To retrieve a Peeko program that you have saved on cassette, press L and 0. The Peeko-Computer asks you for the name of the file that you want to load. Type in the name exactly as you typed in when saving, and press RETURN. If you were loading the demonstration program COUNT, for example, you would type L0, and then the name COUNT in response to the prompt.

When you see the message 'Searching' press the PLAY button on your cassette recorder, first making sure that the cassette is rewound past the start of the file you are loading. When loading is complete, the mnemonic of the instruction indicated by the cursor reappears. Turn off your recorder.

3. Adding two digit numbers

The simple program described in the last chapter can only add single-digit numbers, and the results of the calculation is shared inconveniently between the Accumulator and the CARRY digit.

This next example shows how to extend the program to add together numbers up to 99, and how to transfer the answer back into the Peeko-Computer's memory. It uses two new instructions, STA and LDA#.

(Notice the difference between LDA and LDA#. LDA is followed by two digits giving the address of a location; the value in that location is placed in the Accumulator. LDA# is followed by a single digit which is placed directly in the Accumulator.

The full program is this:

	Location
	Code

	Mnemonic

	00

01

04

07

10

13

16

19

21

24

27
	3

117

437

297

107

427

287

70

402

277

0
	CLC

LDA71

ADC73

STA79

LDA70

ADC72

STA78

LDA#0

ADC20

STA77

BRK

Enter the code starting at location 00. Then step through it using the N key, checking the mnemonics.

This program adds together the numbers in locations 70-71 and 72-73 and places the answer in locations 77-79. Enter two numbers to be added; for example, 76 in locations 70-71 and 65 in locations 72-73. Your Peeko-Computer's memory should look like this:

[image: image3.png]

Before running the program, think about you would do the addition by hand:

	
	1.
	
	2.
	
	3.
	

	
	76
	
	76
	
	76
	

	
	+65
	
	+65
	
	+65
	

	
	
	
	1
	
	41
	

	
	Carry
	
	Carry 1
	
	Carry 1
	

The Peeko-Computer does the addition in exactly the same way. Run the program using the Space Bar, checking what is happening at each stage with this description:

	Instruction
	Action

	
	

	CLC
	CARRY is set to zero.

	
	

	LDA71
	The 'units' digit of the first number is placed in the Accumulator.

	
	

	ADC73
	The 'units' digit of the second number is added to the Accumulator.

	
	

	STA79
	The 'units' digit of the result is placed in the Peeko's memory.

	
	

	LDA70
	The 'tens' digit of the first number is placed in the Accumulator.

	
	

	ADC72
	The 'tens' digit of the second number is added to the Accumulator with the CARRY from the 'units'.

	
	

	STA78
	The 'tens' digit of the result is placed in the Peeko's memory. (The 'hundreds' digit is in CARRY.)

	
	

	LDA #0
	The Accumulator is set to zero.

	
	

	ADC20
	The zero in location 20 is added to the Accumulator with the one in CARRY; this transfers the 'hundreds digits to the Accumulator.

	
	

	STA77
	The 'hundreds' digit of the result is placed in the Peeko's memory.

	
	

	BRK
	The program is stopped.

Note that the 6502 microprocessor (and hence the Peeko-Computer) has no instructions which allow the CARRY digit to be transferred directly to memory. The only way to do this is to set the Accumulator to zero (LDA#0), 'add with carry' (ADC) another zero so transferring the CARRY unit to the Accumulator, and then store the Accumulator (STA). In the ADC20 instruction at location 21, any location other than 20 which contained a zero digit could have been used.

Run the program a few more times, adding together different pairs of numbers.

Exercise 3
Extend the program to add together two three-digit numbers; for example, 304 and 817.

Exercise 4

Write a Peeko program which will add together three two-digit numbers; for example, 76, 65 and 89. (Note that in the Peeko-Computer you cannot 'carry' more than 1. You must add the first pair of numbers, store the result in memory and then add the third number to it.)

When you have written and tested your programs you may like to compare them with possible solutions given in Appendix B.

4. Counting down

This program carries out a continuous countdown from 9 to 0. It uses two new instructions, DEC and JMP.

The program is:

	Location
	Code

	Mnemonic
	Action

	00

03
	507

800
	DEC70

JMP00
	Subtract 1 from the value in location 70.

Go back to location 00.

Enter the code; enter an initial value of 9 in location 70; then run the program by pressing Space Bar. If you hold the Space Bar down the program will run continuously. Notice that when the value in location 70 reaches zero, subtracting 1 restores it to 9.

This program does not have a BRK instruction, so RUN is inverted even when you stop pressing the Space Bar. Pressing other keys simply makes the program continue to execute one instruction at a time. To stop the program, press E (for Escape). E is the only Peeko command that works while a program is running.

(You could also run this program continuously by pressing G. Press E to stop the program in the same way.)

5. Counting Up

This program counts in the opposite direction, from 00 to 99. The new instructions it uses are INC and JNE.

The JNE instruction can be difficult to understand at first, but it is easier if you see it in action.

The number being 'counted up' is shown at locations 70-71, and the program is:

	Location
	Code

	Mnemonic
	Action

	00
	617
	INC71
	Add 1 to the 'units' digit.

	03
	900
	JNE00
	If the 'units' digit has reached 0 go on to the next instruction; otherwise jump back to the instruction at location 00.

	06
	607
	INC70
	Add 1 to the 'tens' digit.

	09
	900
	JNE00
	If the 'tens' digit has reached 0 go on to the next instruction; otherwise jump back to the instruction at location 00.

	12
	0
	BRK
	

Enter the code and check it. Then set locations 70 and 71 to zero and run the program by pressing G to make sure that it works correctly. (Note that the program does not stop until 00 reappears in locations 70 and 71.)

Then run the program again, this time using the Space Bar so that you can see what each instruction is going. Notice particularly what happens when the 'units' digit reaches 9. The next INC71 instruction sets the 'units' digit to 0, and the ZERO flag changes to 1. This time the JNE00 command is ignored, the program goes on to INC70 which increases the 'tens' digit by 1; and the ZERO flag returns to 0.

The Peeko-Computer's ZERO flag tells you about the 'last result' handled by the program. If the last result was zero, the ZERO flag is set to 1. If the last result was not zero, the ZERO flag is set to 0. The meaning of the JNE instruction can also be expressed like this:

'If the last result was not equal to 0, jump to the location following this instruction; if the last result was 0, go on to the next instruction.'

(Your Peeko-Computer cassette contains a Peeko program called COUNT which counts down from 99 to 10 and then jumps to 00. Load COUNT as described at the end of chapter 2 and then run it, comparing its operation with the count-up program.)

6. Multiplying

Exercise 5

Write a program to multiply two single-digit non-zero numbers by successive addition, using the DEC and JNE instructions. Assume that the two numbers to be multiplied will be entered in locations 70 and 72, and that the answer will be placed in locations 78-79.

When you have written and tested your program, compare it with a possible solution shown in Appendix B.

7. Subtracting

In order to subtract using the Peeko-Computer you must use the instructions SEC and SBC from the Peeko's 'alternative instruction set'.

The Peeko-Computer has twenty instructions which can be used in writing programs, but since each has to be represented by a single digit, only ten can be used at any one time.

The standard instruction set consists of the ten instructions you have met so far, which are number from 0 to 9 in the Reference Section. These instructions are automatically given these codes when the Peeko-Computer is first loaded.

In order to use an instruction from the alternative set it must first be assigned to one of the codes 0 to 9. The next section shows how to do this.

Changing instructions

With READY inverted, press key I.

The normal Peeko-Computer screen is replaced by a list of the instructions you are presently using with their codes. Type Y in response to the question Change any? and press RETURN. Then the computer asks you which instruction you want to change; type 3 and press RETURN.

The computer now shows you a list of all the instructions available with their numbers. Type 10 and press RETURN. Notice that the mnemonic next to 3 in the 'Present' set have now changed to SEC.

Repeat this procedure, replacing ADC (code 4) by SBC (instruction number 11). (Notice that, for speed, you can type in response to the question Change any?)

When you have made these changes the present instruction set should look like this:

0 BRK

1 LDA

2 STA

3 SEC

4 SBC

5 DEC

6 INC

7 LDA#

8 JMP

9 JNE

Now when the Peeko-Computer finds instruction code 3 in a program it will execute the SEC instruction, and when it finds code 4 it will execute the SBC instruction.

(You can return to the standard instruction set by typing S in response to Change any?)

To return to the Peeko-Computer, enter N in response to Change any? and press RETURN.

Subtracting two-digit numbers

This program subtracts the number in locations 72-73 from the numbers in locations 70-71 and places the answer in locations 78-79.

Having made these changes to the standard instruction set:

3 SEC

4 SBC

enter this code:

	Location
	Code

	Mnemonic
	Action

	00
	3
	SEC
	Set CARRY to 1.

	01
	117
	LDA71
	Subtract the 'units' digits and place the answer at location 79.

	04
	437
	SBC73
	

	07
	297
	STA79
	

	
	
	
	

	10
	107
	LDA70
	Subtract the 'tens' digits and place the answer at location 78.

	13
	427
	SBC72
	

	16
	287
	STA78
	

	
	
	
	

	19
	0
	BRK
	

Before trying to understand exactly how this program works, run it a few times using different pairs of numbers. For example, to subtract 56 from 78 you would enter:

	Location
	Data

	70
	7

	71
	8

	72
	5

	73
	6

Notice that, if the CARRY digit is 1 after the program has been run, locations 78-79 contain the correct positive answer. If the CARRY digit is zero the answer should be negative; it is actually the number shown in locations 78-79 minus 100.

The precise action of the SBC instruction is determined by the internal workings of the 6502 microprocessor, making it difficult to understand. However, if you follow these rules:

1. set CARRY to 1 before the subtraction (using SEC),

2. check that CARRY is still 1 after the subtraction,

your Peeko programs will always work correctly.

If you would like a more detailed explanation of the SBC instruction, see Appendix A.

8. Dividing

This program divides a two-digit number in locations 70-71 by a single digit number in location 73. It places the answer in locations 76-77 and the remainder (if any) in location 79.

The program carries out the division by subtracting the denominator repeatedly until it detects a zero CARRY digit, showing that the last subtraction had a negative result. In addition to the instructions met so far, the program uses the instruction JCC (Jump if CARRY clear).

To enter the program, make these changes to the standard instruction set:

3 SEC

4 SBC

5 JCC

and then type in the code:

	Location
	Code

	Mnemonic
	Action

	00
	70
	LDA #0
	These instructions set the answer and remainder locations to zero.

	02
	267
	STA76
	

	05
	277
	STA77
	

	08
	297
	STA79
	

	
	
	
	

	11
	117
	LDA71
	Transfer the 'units' digit of the numerator to location 79; if no more subtractions are possible, this is the remainder.

	14
	297
	STA79
	

	
	
	
	

	17
	3
	SEC
	Subtract the denominator from the numerator and put the result back in locations 70-71. Note that the zero in location 01 is subtracted from the 'tens' digit to ensure that the 'carry' is taken into account.

	18
	437
	SBC73
	

	21
	217
	STA71
	

	24
	107
	LDA70
	

	27
	410
	SBC01
	

	30
	207
	STA70
	

	
	
	
	

	33
	584
	JCC48
	If CARRY is zero the last subtraction had a negative result and the calculation is finished; jump to BRK at location 48.

	
	
	
	

	36
	677
	INC77
	Add one to the 'units' digit of the answer; if this becomes zero, also add one to the 'tens' digit. Then return to the start of the next subtraction at location 11.

	39
	911
	JNE11
	

	42
	667
	INC76
	

	45
	811
	JMP11
	

	
	
	
	

	48
	0
	BRK
	

When you are satisfied that this programs works, and that you understand how it works, load the program FACTOR which is supplied on the cassette.

This program finds the highest factor less than 10 of a two-digit number. It divides by repeated subtraction, starting with a denominator of nine. If the remainder is non-zero it repeats the calculation using a denominator of eight, and so on until it finds the first factor.

To use the program, make sure that locations 76 and 77 are zero and enter the number you want to find the factor of in locations 78-79. When the program stops, the highest factor is shown in location 77. To find the next highest factor, simply restart the program.

9. Adding two lines of data

This program makes use of two additional instructions from the alternative instruction set: LDA() and STA(). These work in a similar way to the LDA and STA instructions that you have met already. The differences between them are most easily explained by means of an example.

LDA() and STA()
Make these changes to the standard instruction set.

1 LDA (

2 STA (

and then enter this code

	Location
	Code

	Mnemonic

	00
	107
	LDA(70)

	03
	227
	STA(72)

	06
	0
	BRK

And data:

	Location
	Data

	50
	9

	60
	0

	70
	0

	71
	5

	72
	0

	73
	6

Then run the program.

Notice that LDA (70) does not load the Accumulator with the value at location 70 (which is zero). Instead it loads the value in the location 'pointed to' by locations 70 and 71. The values in locations 70-71 are 05; this is location 50 in the normal back-to-front form; so LDA(70) loads the Accumulator with the value at location 50 (which is 9).

	
	
	ACC
	
	
	
	
	
	
	
	
	
	
	
	ACC
	9
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	
	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	0
	
	
	
	
	
	
	
	
	
	
	
	
	0
	
	
	
	
	
	
	
	
	
	
	

	1
	
	
	
	
	
	
	
	
	
	
	
	
	1
	
	
	
	
	
	
	
	
	
	
	

	2
	
	
	
	
	
	
	
	
	
	
	
	
	2
	
	
	
	
	LDA (70) loads the value from location 50 into the Accumulator
	

	3
	
	
	
	
	
	
	
	
	
	
	
	
	3
	
	
	
	
	
	

	4
	
	
	
	
	
	
	
	
	
	
	
	
	4
	
	
	
	
	
	

	5
	
	9
	
	
	locations 70 and 71

'point to' location 50
	
	5
	
	9
	
	
	
	

	6
	
	
	
	
	
	
	6
	
	
	
	
	
	
	
	
	
	
	

	7
	
	0
	5
	0
	6
	
	
	
	
	
	
	
	7
	
	0
	5
	0
	6
	
	
	
	
	
	

Similarly, STA (72) stores the value in the Accumulator at the location 'pointed to' by locations 72 and 73. The values in locations 72-73 are 06; so STA(72) stores the value 9 at location 60.

	
	
	ACC
	9
	
	
	
	
	
	
	
	
	
	
	ACC
	9
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	
	
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	0
	
	
	
	
	
	
	
	
	
	
	
	
	0
	
	
	
	
	
	
	
	
	
	
	

	1
	
	
	
	
	
	
	
	
	
	
	
	
	1
	
	
	
	
	
	
	
	
	
	
	

	2
	
	
	
	
	
	
	
	
	
	
	
	
	2
	
	
	
	
	STA (72) stores the value in the Accumulator at location 60
	

	3
	
	
	
	
	
	
	
	
	
	
	
	
	3
	
	
	
	
	
	

	4
	
	
	
	
	
	
	
	
	
	
	
	
	4
	
	
	
	
	
	

	5
	
	
	
	
	locations 72 and 73

'point to' location 60
	
	5
	
	
	
	
	
	

	6
	
	
	
	
	
	
	6
	
	9
	
	
	
	
	
	
	
	
	

	7
	
	0
	5
	0
	6
	
	
	
	
	
	
	
	7
	
	0
	5
	0
	6
	
	
	
	
	
	

Now change the values in locations 72 and 73. What will happen when you run the program now? Try it to see if you are right. Then try changing the values in locations 70 and 71.

LDA() and STA() enable you to carry out operations on data in different parts of the Peeko-Computer's memory, without having to rewrite the program.

To see a slightly more complicated example, load the program called COPY from your cassette. This program copies a whole row of data from locations 50-59 to locations 60-69. It uses INC instructions to change the locations points to by the LDA() and the STA() instructions.

Adding lines of data

This program is provided on your cassette under the name of ADD.

If you would rather type it in yourself, make these changes to the standard instruction set:

1 LDA(

2 STA(

7 STA

(Notice that, for this program, the normal Store Accumulator instruction has been changed to code 7 from its standard code of 2. Any Peeko-Computer instruction can be given any code from 0 to 9.)

Then enter this code:

number being 'counted up' is shown at locations 70-71, and the program is:

	Location
	Code

	Mnemonic
	Action

	00
	3
	CLC
	Set the CARRY digit to zero for the first addition only.

	01
	187
	LDA(78)
	Transfer a number from row 4 to location 73.

	04
	737
	STA73
	

	07
	167
	LDA(76)
	Load the corresponding number from row 5 into the Accumulator and add to it the number from row 4 (which was stored in location 73).

	10
	437
	ADC73
	

	13
	247
	STA(74)
	Store the result in row 6.

	16
	587
	DEC78
	Change the values at locations 74, 76 and 78 so that the program will add the next numbers from rows 4 and 5.

	19
	567
	DEC76
	

	22
	547
	DEC74
	

	25
	910
	JNE01
	If the value at location 74 has reduced to zero showing that all the numbers have been added, display last 'carry' in location 60 and stop the program. Otherwise go to location 01 to add the next two numbers.

	28
	187
	LDA(78)
	

	31
	405
	ADC50
	

	34
	247
	STA(74)
	

	37
	0
	BRK
	

and this data:

	Location
	Data

	74
	9

	75
	6

	76
	9

	77
	5

	78
	9

	79
	4

Then enter the lines of numbers you want added together at locations 41 to 49 and locations 51 to 59. (Locations 40 and 50 must be left blank to enable location 60 to display the last 'carry'.)

Notice that there is no ADC() instruction to go with LDA() and STA(). In the program above, numbers from row 4 are first transferred to a known location (see locations 01 to 06) and then added to the number from row 5 using the normal ADC command (see locations 07 to 12).

10. Finding a maximum

This program finds the maximum of a series of numbers and introduces the CMP# instruction. It is easier to see how this instruction works if you first try this short program.

Make these changes to the standard instruction set:

2 CMP#

6 INC A

and then enter this code:

	Location
	Code

	Mnemonic
	Action

	00
	74
	LDA#4
	Set the Accumulator to an initial value of 4.

	
	
	
	

	02
	25
	CMP#5
	Compare the value in the Accumulator with 5.

	
	
	
	

	04
	6
	INC A
	Increase the value in the Accumulator.

	
	
	
	

	05
	820
	JMP 02
	Repeat the comparison.

Run the program using the Space Bar, checking the values of CARRY and ZERO after each comparison. Notice how these values change depending on whether the Accumulator value is less than, equal to or greater than the value with which it is being compared.

By checking the status of CARRY and/or ZERO after a comparison it is possible to work out the relative size of the two numbers being compared, as demonstrated by this 'Maximum' program.

Make these changes to the standard instruction set:

1 LDA(

4 JCC

5 JEQ

7 CMP#

and enter this code:

	Location
	Code

	Mnemonic
	Action

	00
	107
	LDA(70)
	Load the first (or next) value to be checked.

	
	
	
	

	03
	562
	JEQ26
	If the value is 0 jump to the end of the program.

	
	
	
	

	06
	70
	CMP#0
	Compare the value with the current highest value (set initially to 0).

	
	
	
	

	08
	441
	JCC14
	If the Accumulator value is greater than (or equal to) the current highest value, set is as the new current highest value

	11
	270
	STA07
	

	
	
	
	

	14
	607
	INC70
	Reset the pointer to the next value to be checked.

	17
	900
	JNE00
	

	20
	617
	INC71
	

	23
	800
	JMP00
	

	
	
	
	

	26
	0
	BRK
	

and this data:

	Location
	Data

	70
	0

	71
	4

Check the program, and then enter the series of single-digit numbers that you want to find the maximum of. These must start at location 40. The program continues to check the numbers in locations 41, 42 and so on until it finds a zero; then it stops. The maximum number in the series is displayed at location 07. (To rerun the program, first reset location 07 to 0 and locations 70 and 71 to 0 and 4 respectively.)

Notice that the program replaces the 'current highest value' not only when the Accumulator value is greater, but also when it is equal. This is slightly inefficient, but it simplifies the program because it is not necessary to check both the CARRY and ZERO digits.

Exercise 6

Improve the 'Maximum' program in these ways:

1. Replace the 'current highest value' only when the Accumulator value is greater than it.

2. Store the maximum value found by the program in location 79.

3. Enable the series of numbers to include zeros. You will need to tell the program how many numbers it has so that it knows when to stop. (You may find that a program including all three of these improvements requires more than the ten instructions that you are allowed to use at one time. If this is the case, you will have to do without improvement 1 and/or 2.

See Appendix B for suggested solutions to these problems.

11. Generating prime numbers

Finally, an example of a very complex Peeko-Computer program. This program generates prime numbers (numbers which cannot be divided by any other number) between 10 and 99.

The program works by testing each number between 10 and 99 in turn. It tests a number by dividing it by 2, 3 and so on up to 9, carrying out the divisions by repeated subtraction. If one of these divisions is exact the number is not a prime, and the program goes on to testing the next number. If none of these divisions is exact, the number being tested is prime, and the program stops.

You can load the program from a file on your cassette called PRIMES. Alternatively, if you would rather enter the program yourself, make these changes to the standard instruction set:

3 SEC

4 SBC

5 JCS

8 JEQ

and then enter these codes:

	Location
	Code

	Mnemonic
	Action

	00
	70
	LDA# 0
	Set location 74 to 0.

	02
	247
	STA 74
	

	
	
	
	

	05
	697
	INC79
	Add 1 to the value of the number which is being tested to see if it is prime.

	08
	941
	JNE14
	

	11
	687
	INC78
	

	
	
	
	

	14
	72
	LDA#2
	Enter the first number to be used for division in location 75.

	16
	257
	STA75
	

	
	
	
	

	19
	197
	LDA79
	Transfer the number being tested to locations 76-77.

	22
	277
	STA77
	

	25
	187
	LDA78
	

	28
	267
	STA76
	

	
	
	
	

	31
	3
	SEC
	Subtract the number being used for division from the number being tested.

	32
	177
	LDA77
	

	35
	457
	SBC75
	

	38
	277
	STA77
	

	41
	167
	LDA76
	

	44
	447
	SBC74
	

	47
	267
	STA76
	

	
	
	
	

	50
	995
	JNE59
	If the result of the division is zero, the number is not a prime; return to location 05 to increase the number by 1.

	53
	177
	LDA77
	

	56
	850
	JEQ05
	

	
	
	
	

	59
	523
	JCS32
	If CARRY is 1 the division is not complete; return to location 32 to continue it.

	
	
	
	

	62
	657
	INC75
	Increase the number being used for division by 1; if this gives a zero result every number from 2 to 9 has been tested; stop the program.

	65
	991
	JNE19
	

	68
	0
	BRK
	

and this data:

	Location
	Data

	78
	0

	79
	9

The number currently being tested is shown in location 78-79. When the program stops, the number in these locations is a prime number. To generate the next prime number, rerun the program without changing the existing number.

12. Printing

The contents of the Peeko-Computer's memory can be printed by giving the P command while READY is inverted. Your Electron must, of course, be connected to a printer.

Note that the memory contents are printed in code form as shown on the screen. It is not possible to print out programs in mnemonic form.

Appendix A

Subtracting using the Peeko-Computer

As explained in chapter 7, a Peeko-Computer program carries out subtraction by using the SBC instruction.

SBC stands for 'Subtract with CARRY', which makes it sound as if it works in the same way as ADC ('Add with CARRY'). However this is not really the case.

In Peeko addition, CARRY can be thought of as containing the digit which is being 'carried' forward as in normal addition by hand. In Peeko subtraction, CARRY is used in a different way. It acts as a 'flag' which indicates to the Peeko-Computer what happened in the previous part of the calculation, like this:

	Value of CARRY 'flag'
	Meaning

	1
	No 'borrow' took place in previous part of subtraction.

	0
	'Borrow' took place in previous part of subtraction.

Ideally, the 6502 microcomputer (and hence the Peeko-Computer) would have a separate 'borrow' flag. However, it doesn't, and CARRY is used for this purpose as well as for its normal addition function.

This is why CARRY must be set to 1 at the start of a subtraction; because there was no 'previous part' of the subtraction and so no borrow can have taken place. It is also why, if an SBC instruction is executed while CARRY is 0, an 'extra' one is subtracted from the result; the Peeko-Computer is 'paying back' the borrow.

This is how the Peeko-Computer subtracts 154 from 226:

	1. Initially, no borrow has taken place, so set CARRY to 1.
	226

-154

carry flag 1

	2. 6 – 4 = 2, with no borrow, so reset CARRY to 1.
	226

-154

2

carry flag 1 .

	3. 5 cannot be subtracted from 2 so we must borrow. Then 12-5=7, and CARRY is set to 0 to indicate the borrow.
	226

-154

72

carry flag 0 .

	4. 2 – 1 = 1; but because of the previous borrow (shown by CARRY being 0) a further 1 must be subtracted to repay it. No borrow was required for this part of the calculation, so reset CARRY to 1. As the final CARRY flag is 1, the result is positive.
	226

-154

072

carry flag 1 .

This second example shows how the Peeko-Computer can repay and borrow in the same part of the calculation, and explains the significance of a final CARRY flag of zero.

	1. Initially, set CARRY to 1.
	43

-59

carry flag 1

	2. 9 cannot be subtracted from 3 so borrow.

13 – 9 = 4; set CARRY to 0.
	43

-59

4

carry flag 0 .

	3. 5 cannot be subtracted from 4 so borrow.

14 – 5 = 9; but CARRY = 0 so repay the previous borrow: 9-1=8. Another borrow has taken place so reset CARRY to 0.
	43

-59

72

carry flag 0 .

A final CARRY flag of zero indicates that a borrow has not been repaid so that the true answer is negative. In this particular example 100 has been borrowed and not repaid, so the true answer is 84-100 = -16.

In mathematical terms, the SBC instruction operates like this:

A = A – M – (1 – C)

If A>0; C=1

If A<0; A= A+10; C=0

where

A = the value in the Accumulator

M = the value in memory being subtracted from the Accumulator

C = the value of the CARRY flag.

Appendix B

Sample solutions to exercises

Exercise 3

This program adds together the numbers in locations 70-72 and 73-75 and places the result in locations 76-79.

	Location
	Code

	Mnemonic
	Action

	00
	3
	CLC
	Adding 'units'

	01
	127
	LDA72
	

	04
	457
	ADC75
	

	07
	297
	STA79
	

	
	
	
	

	10
	117
	LDA71
	Adding 'tens'

	13
	447
	ADC74
	

	16
	287
	STA78
	

	
	
	
	

	19
	107
	LDA70
	Adding 'hundreds'

	22
	437
	ADC73
	

	25
	277
	STA77
	

	
	
	
	

	28
	70
	LDA#0
	Placing 'thousands' (if any) in memory

	30
	492
	ADC29
	

	33
	267
	STA76
	

	36
	0
	BRK
	

Exercise 4

This program adds together the numbers in location 70-71, 72-73 and 74-75, and places the results in locations 77-79. It does the calculation in two stages, using the 'result' locations to store the intermediate total.

	Location
	Code

	Mnemonic
	Action

	00
	3
	CLC
	

	01
	117
	LDA71
	

	04
	437
	ADC73
	

	07
	297
	STA79
	

	10
	107
	LDA70
	

	13
	427
	ADC72
	Adding first two numbers.

	16
	287
	STA78
	

	19
	70
	LDA#0
	

	21
	402
	ADC20
	

	24
	277
	STA77
	

	
	
	
	

	27
	157
	LDA75
	

	30
	497
	ADC79
	

	33
	297
	STA79
	

	36
	147
	LDA74
	Adding third number to

	39
	487
	ADC78
	intermediate total.

	42
	287
	STA78
	

	45
	70
	LDA#0
	

	47
	477
	ADC77
	

	50
	277
	STA77
	

	53
	0
	BRK
	

Exercise 5
This program multiplies the numbers in locations 70 and 72 and places the result in locations 78-79. Notice that the program will not work if the number in location 72 is zero.

	Location
	Code

	Mnemonic
	Action

	00
	3
	CLC
	

	01
	127
	LDA72
	Transferring the second number to location 74.

	04
	247
	STA74
	

	07
	70
	LDA#0
	

	09
	287
	STA78
	Clearing locations 78 and 79.

	12
	297
	STA79
	

	
	
	
	

	15
	197
	LDA79
	

	18
	407
	ADC70
	Adding the first number to be multiplied to the total to date in locations 78 and 79.

	21
	297
	STA79
	

	24
	70
	LDA#0
	

	26
	487
	ADC78
	

	29
	287
	STA78
	

	32
	547
	DEC74
	Reducing the second number by one.

	
	
	
	

	35
	951
	JNE15
	If the second number has reduced by zero, stop the program.

	38
	0
	BRK
	

Exercise 6

1.

	Location
	Code

	Mnemonic
	Action

	00
	107
	LDA(70)
	

	03
	592
	JEQ29
	

	06
	70
	CMP#0
	

	08
	471
	JCC17
	

	11
	571
	JEQ17
	Jumps to resetting pointer unless Accumulator value is greater than current highest value.

	14
	270
	STA07
	

	17
	607
	INC70
	

	20
	900
	JNE00
	

	23
	617
	INC71
	

	26
	800
	JMP00
	

	29
	0
	BRK
	

2. Make this additional change to the instruction set:

3 LDA

	Location
	Code

	Mnemonic
	Action

	00
	107
	LDA(70)
	

	03
	592
	JEQ29
	

	06
	70
	CMP#0
	

	08
	471
	JCC17
	

	11
	571
	JEQ17
	

	14
	270
	STA07
	

	17
	607
	INC70
	

	20
	900
	JNE00
	

	23
	617
	INC71
	

	26
	800
	JMP00
	

	29
	370
	LDA07
	Moves the highest value from location 07 to location 79.

	32
	297
	STA79
	

	35
	0
	BRK
	

3. This program does not include improvements 1 or 2,.

Make these changes to the standard instruction set.

1 LDA(

3 LDA

4 JCC

7 CMP#

	Location
	Code

	Mnemonic
	Action

	00
	347
	LDA74
	Reducing by one the number of entries being examined, which is stored at locations 73 and 74.

	03
	921
	JNE12
	

	06
	537
	DEC73
	

	09
	983
	JNE38
	

	12
	547
	DEC74
	

	
	
	
	

	15
	107
	LDA(70)
	

	18
	70
	CMP#0
	

	20
	462
	JCC26
	

	23
	291
	STA19
	

	26
	607
	INC70
	

	29
	900
	JNE00
	

	32
	617
	INC71
	

	35
	800
	JMP00
	

	
	
	
	

	38
	337
	LDA73
	Checking if last entry has been examined.

	41
	79
	CMP#9
	

	43
	921
	JNE12
	

	46
	0
	BRK
	

To use this program:

1. Enter the series of single-digit number that you want to find the maximum of, starting at location 50 (not location 40). Up to 20 number can be entered, including zero.

2. Enter the number of digits in the series in locations 73 and 74.

3. Enter 0 in location 70 and 5 in location 71.

4. Enter 0 in location 19.

The result is found in location 19.

Appendix C

Hints on programming

As you use the Peeko-Computer you will develop your own techniques for writing programs. However you may find it helpful to follow this procedure:

1. Choose the memory locations that you are going to use for data; for example, where in memory you will put the numbers to be added or multiplied and where you will put the results. Decide also whether you will need any intermediate calculations, or whether you will take copies of data for counting purposes; if so, choose the locations you will use for them.

2. Write the program in mnemonic form. In order to be able to complete 'JMP' instructions, make a note of the start location of each instruction.

3. Check whether you have used any instructions from the 'alternative' instruction set. If so, decide which code you are going to give each of them. (These must of course be codes of instructions from the standard set that you are not using in this program.)

4. Write the full instruction code against each mnemonic.

5. Enter the code into your Peeko-Computer.

6. Check that the mnemonics are correct using the 'N' command.

7. Step through the program using the Space Bar to ensure that it works correctly.

Appendix D

Further exercises:

These are suggestions for additional programs that you could write for your Peeko-Computer:

1. A program to find the minimum of a group of numbers.

2. A program to find the value of n! (that is, n x (n-1)x(m-1)x … x1) for values of u up to 9.

3. A program to divide numbers up to 99 by numbers up to 9, rounding the result to the nearest whole number.

4. A program to find the value of the progression n+(n-1)+(n-2)+…+1 for values of n up to 99.

Reference Section

Commands

	0 to 9
	
	Enter the corresponding number into the Peeko-Computer's memory at the current location of the cursor

	Space Bar
	
	Start running the program, or execute the next instruction

	E
	Escape
	Stop running the program (only while RUN is inverted)

	F
	Fast
	Run the program quickly

	G
	Go
	Run the program

	I
	Instructions
	Edit the present instruction set. Respond to Change any? with one of:

Y to change the present instruction set

N to retain the present instruction set

S to return to the standard instruction set

0 to 9 to change the corresponding instruction

	L0
	Load
	Load a program from cassette

	L1 to 9
	
	Load a program from area 1 to 9 of the Electron's memory

	N
	Next
	Display the next instruction

	O
	Origin
	Move the cursor to location 00

	P
	Print
	Print the contents of the Peeko-Computer's memory

	S0
	Save
	Save a program to cassette

	S1 to 9
	
	Save a program to area 1 to 9 of the Electron's memory

Instructions

	Standard

Code
	Mnemonic
	Meaning

	0
	BRK
	(Break) Stop the program

	1
	LDA xx
	(Load Accumulator) Replace value in Accumulator by value in location xx

	2
	STA xx
	(Store Accumulator) Place value n Accumulator in location xx

	3
	CLC
	(Clear CARRY) Set CARRY digit to zero

	4
	ADC xx
	(Add with CARRY) Add value in location xx and CARRY digit to value in Accumulator

	5
	DEC xx
	(Decrease memory) Reduce the value in location xx by one

	6
	INC xx
	(Increase memory) Increase the value in location xx by one

	7
	LDA# n
	(Load Accumulator immediately) Replace the value in the Accumulator by n

	8
	JMP xx
	(Jump always) Jump to location xx

	9
	JNE xx
	(Jump if ZERO not equal to one) If the ZERO flag is 0, jump to location xx; otherwise go to the next instruction

	
	
	

	10
	SEC
	(Set CARRY) Set the CARRY digit to 1

	11
	SBC xx
	(Subtract with CARRY) Subtract the value in location xx from the value in the Accumulator

	12
	CMP# n
	(Compare immediate) Compare the value in location xx with n. If:

Accumulator<n set CARRY to 0, ZERO to 0

Accumulator=n set CARRY to 1, ZERO to 1

Accumulator>n set CARRY to 1, ZERO to 0

	13
	JCC xx
	(Jump if CARRY clear) If CARRY is 0, jump to location xx; otherwise go to the next instruction

	14
	JCS xx
	(Jump if CARRY set) If CARRY is 1, jump to location xx; otherwise go to the next instruction

	15
	JEQ xx
	(Jump if ZERO equal to one) If the ZERO flag is 1, jump to location xx; otherwise go to the next instruction

	16
	DEC A
	(Decrease Accumulator) Reduce the value in the Accumulator by one

	17
	INC A
	(Increase Accumulator) Increase the value in the Accumulator by one

	18
	LDA(xx)
	(Load Accumulator indirectly) Replace value in the Accumulator by the value in the location pointed to by locations xx and xx+1

	19
	STA(xx)
	(Store Accumulator indirectly) Place the value in the Accumulator in the location pointed to by locations xx and xx+1

PAGE
42

