FMON Machine Code Monitor

INTRODUCTION

FMON is a powerful machine code monitor for the BBC microcomputer models A and B, and the Acorn Electron. It uses about 5.5K of memory and includes a disassembler, a relocator, a line assembler, a trace mode, break points, user-defined variables and procedures and full support of MOS and VDU commands.

FMON loads into memory at &1902 from cassette, but can be relocated anywhere in user RAM and resaved if required (e.g. for use with a DFS). FMON requires the BBC Micro MOS 1.0 or above.

INSTRUCTIONS

There are three 'system variables' A1, A2 and A3. These are 16 bit variables, used as parameters (often addresses) for the FMON commands. In addition, other 'user-defined' variables can be created, each with a single-character name.

There are two basic types of command:

1. Number commands, which enter a number into the system variable A1. These are usually more than one character long, and are terminated when an invalid character is found.

2. Executable commands, which are single characters causing various routines to be called which take their parameters (if required) from the system variables.

1. Number Commands
Each time a number is entered it is put directly into A1. A number may be entered in any of the following formats.

1.1 Hex Numbers
These are input simply by typing the hex number, e.g. FE39. The system considers the number complete when a non-hex character – e.g. RETURN or SPACE – is encountered. If more than four hex digits are found together (forming a number too big to be entered into 16 bits) then the least significant four digits will be used – e.g. entering FEBC9A will place the value BC9A in A1.

1.2 Binary Numbers
These are input be prefixing the binary number with '%'. The digits after '%' will be input to A1 as a binary number until the first non-binary character. As above, only the least significant 16 bits are recognised.

1.3 Decimal Numbers

These are input by prefixing the decimal number with '£'. In this case, if the number is too big, then the least significant five decimal digits are recognised.

1.4 ASCII Values
Prefixing a character by '$' will place its ASCII value into A1. If no character follows the '$' then an error message will result.

1.5 User Defined Variables
Prefixing a UDNV (User Defined Number Variable) by a '{' will cause the value of that variable to be placed in A1. If no character follows the '{' or if the UNDV is undefined then an error message will be displayed.

In any situation where you are required to type a number, any of these methods can be used. In some situations only a single-byte number is required (e.g. the commands ':' and 'U'); in these cases only the least significant 8 bits will be used.

2. Executable Commands

Monitor commands, such as 'disassemble', 'list', 'block move', etc, are invoked by typing a single character command. If any parameters are required, they are taken from the system variables (A1, A2 and A3). More than one command may be put on each line – no separators are required – and they will be executed from left to right. The commands are explained under the following headings.

2.1 System Variables
These commands alter and examine the contents of the three system variables. See 'Number Commands' for a description of how to place a number in A1.

?
prints out A1, A2 and A3 in hex.

=
print A1 only in hex.

d
prints A1 in decimal.

b
prints A1 in binary. Note that the format for the binary output, with a space between each pair of nibbles, is for reading convenience only. Binary numbers may not be input in this format.

~
copies A1 into A2.

,
swaps A1 with A2.

>
swaps A1 with A3.

<
swaps A2 with A3.

2.2. Arithmetic Commands

The following commands act on the system variables A1 and A2.

(Read ':=' as 'becomes'.)
+
A1 := A2 + A1 (carry is lost)

-
A1 := A2 – A1 (carry is lost)

^
A1 := A2 AND A1

v
A1 := A2 OR A1

x
A1 := A2 EXOR A1

g
A1 := FFFF (TRUE) if A2 >= A1, 0000 (FALSE) otherwise.

\
A1 := NOT A1 (A1 is TRUE if it is non-zero).

Examples (underlined text is output)

a) F35,£123 1010+=

 OFBO
How it works : F35 (a valid hex number) is put into A1. , swaps A1 and A2; so F35 is now in A2. £123 (a valid decimal number) is put into A1. + puts A1 + A2 into A1. = displays the result.

b) £4567,%1010001-d

 £04486

(The result here is 456710 – 10100012 displayed in decimal.)

c) 3F0,49A-=

 FF56
(The result of this subtraction should be –AA16 but the carry has been lost).

2.3 Listing and Changing Memory
Some of these commands change the contents of RAM, s be careful not to change any of the RAM used by FMON. Notation: (A2) means 'the byte whose address is in A2'.

'
puts A1L, the low byte of A1, into (A2), and then increments A2.

"
puts A1L into (A2), A1H into (A2+1) and increments A2 by two.

puts (A1) into A1L and (A1+1) into A1H.

.
prints (A1) and then increments A1.

P
prints (A2) to (A1) and increments A1. This is a hex dump.

P
prints (A1) onwards for a screenful.

A
is as for 'p' except that the values are printed as ASCII characters. The high bit is ignored (ASCII codes have only 7 bits) and control characters are printed as spaces.

M
does a block move (from bottom to top) of the memory between A2 and A3 inclusive into the same amount of memory from A1 onwards. For example, 2000,217F>3500M will copy the RAM from 2000 to 217F into the RAM from 3500 to 367F.

V
verifies the block of RAM between A2 and A3 with A1 onwards. Any bytes which are not the same are printed out, together with their addresses.

:
allows the alteration of consecutive locations from A1 onwards. The (8 bit) numbers, separated by spaces, will be placed into (A1), (A1+1), etc. The command is terminated when a non-numeric character other than a space or an underline is found. The space separates the numbers and the underline jumps a location without altering it.

3. Disassembling and Tracing

These commands enable the user to debug a machine code program by listing it, using the standard 6502 mnemonics, stepping through the program instruction by instruction, and displaying the 6502 registers.

l
disassembles one instruction starting at A1. A1 is then set to point at the beginning of the next instruction. The format is the address followed by the instruction in hex, ASCII and mnemonic form.

L
repeats 'l' for about a screenful.

G
transfers control to a machine code routine at A1. Immediately before control is transferred, the 6502 registers are loaded with a set of values which may be entered using the U command. Control will be returned to FMON when an RTS or BRK instruction is found. The 6502 registers can then be examined using the 'R' command. If the routine is exited by a BRK, then a message will be displayed, showing the location of the breakpoint. This is very useful for debugging. Example: FFEEG will call the MOS OSWRCH routine.

R
prints out the contents of the temporary 6502 registers used to initialise the real 6502 registers when a 'G', 'T' or 't' command is executed. The PC is not used in a 'G' command.

U
allows the temporary 6502 registers to be updated. It works in the same way as the ':' command, except that the PC is updated with a 16-bit number, and all numbers after the PC are ignored. After a 'G', 'T' or 't' command, the registers are automatically updated.

Q
is used to change the PC more quickly than using the 'U' command. PC is set to the value of A1.

t
will trace one step through a program, starting from PC. The instruction is executed, PC is updated to the next instruction and copied into A1. The system variables are left unchanged, and they may therefore be used to peek and poke locations between steps. Whilst tracing through a program, many subroutines (such as MOS calls) may be encountered, for which tracing is not required. A facility is provided to enable a certain amount of user discrimination over those routines which are traced. There are two variables, Min and Max, which give the minimum and maximum addresses for subroutines, jumps and indirect jumps that will be traced. Addresses outside this range will cause the subroutine or jump to be executed but not traced. Thus, if Min and Max are set to 0000 and 8000 (as initialised), then all MOS routines will be executed but not traced.

T will trace continuously through a program until ESCAPE is pressed or a user breakpoint is reached. Each time an instruction is executed, a list of addresses is checked to see if the current execution address corresponds with one of them. If it does, then execution is terminated. The list of addresses should be placed at A2, in the format: (A2) = number of addresses (between 0 and 127), (A2+1)(A2+2) = first address, (A2+3)(A2+4) = second address, and so on.

r
displays the values of Min and Max, the addresses used for the limits of the trace and relocate functions.

n
transfers A1 to Min.

N
transfers A1 to Max.

Warning: When using the trace facilities, do not set the temporary stack points to be anywhere near the part of the stack used by FMON (1FF downwards – i.e. S=FF). The temporary stack pointer is initialised to 7F, which should be adequate for general use. Also, the value of PC is unpredictable following the final RTS from a routine, so tracing should not be continued further without resetting the appropriate parameters.

3.1 Relocating Facilities
6502 machine code programs are very rarely written to be relocatable, because of the lack of a 'branch' command in the instruction set. Three commands are available to help with the relocation of compiled or assembled machine code.

y
allows the relocation of a machine code program from A2 to A3 into A1 onwards. JSR's and JMP's are not relocated if they are outside the range Min to Max. If they are within this range, then the relocation will halt until a key is pressed. If RETURN is pressed, then the instruction will be relocated. Any other key will cause the instruction to be skipped without adjustment. This is useful if parts of your program are data, but appear to the disassembler to be instructions.

Y
has the same effect as 'y', except that all instructions between Min and Max will be relocated without halting. This is useful for programs known to have no inserted data.

|
is a very powerful command which enables FMON to be relocated anywhere in user RAM. The monitor is relocated to RAM starting at A1. The relocated monitor is exactly equivalent to the original, and my be saved to be *RUN directly from the new start address. When relocating, be sure not to overlap the new area with the old, since this could cause a crash. After FMON has been relocated, the original monitor is still in control. Control can be transferred to the new monitor using the 'G' command.

@
sets A1 to be the address of the start of the input line buffer. This command will always force a warm reset, so that FMON will not crash.

f
displays the version number of FMON and then the start and end address of the monitor and the current input line buffer start – useful for finding out where you are!

3.2 Searching
This routine searches a section of memory for a given sequence (string) of bytes. The first byte of the string contains the number of bytes to be searched for; the following bytes are those in the search string.

S
searches from A2 to A3 for a sequence starting at A1. That is, (A1) is the number of bytes, and (A1+1)...(A1+n) is the sequence, where (A1)=n.

!
forms ASCII strings in the correct format for the 'S' command. The first character following the '!' is treated as a delimiter – the first subsequence occurrence of this character (not inclusive) marks the end of the string. The ASCII values of the characters between the two delimiters are put into (A1+1) onwards, and the length of the sequence is put into (A1). If the second delimiter is not found, then a warning message will be displayed, and the sequence will include the RETURN character.

k
will list all the UDNV's with their values, followed by the UDCV's with their command lines in the order they were defined.

XA
executes the UDCV named 'A'. If the UDCV is not found, an error is caused.

q
clears all the variables within the space being used.

m
displays the memory used by the variables. This block can be saved (using a *SAVE command) for future use, and reloaded anywhere in user RAM – the data block is relocatable.

u
transfers A1 to a variable which points to the beginning of the UDV space. This command does not then clear that space, so several blocks of data can be formed and 'u' used to select one of them.

K
displays the user-defined key settings.

The variables are stored as follows. The UDNV's give first the name (one byte) followed by the value (two bytes). The UDCV's are stored afterwards as the name (one byte with high bit set), then the length including the length and name bytes (one byte) followed by the command line (including the terminating RETURN character). The end of HDCV space is marked by a byte set to FF.

5. General Commands
Z
prints the title strings of the resident sideways ROMs. The ROM currently selected for all FMON read operations is marked with a '*'.

&
uses the low nibble of A1 to select a new 'current' ROM.

/
is a null command, which may be used for terminating the commands ':' and 'U'.

Hf
(Help 'command') This displays the address of the start of the code which executes the system command specified (in this case 'f'). If there is no command specified, or it is not a system command, then this is ignored.

H
(help) displays a list of the commands available in FMON in the documentation order.

W
sets the width of screen used by p, P and 'a' commands. A1 should be 0, or 2 (a number greater than 2 is treated as 2). 0 is suitable for a 20-column display (modes 2 and 5), 1 for a 40-column display (modes 1, 4, 6 and 7) and 2 for an 80-column display (modes 0 and 3).

s
sends A1L to the VDU queue via OSWRCH (no RETURN follows) - of BASIC VDU command.

;
sends A1L then A1H to the VDU queue of ';' in BASIC VDU command.

c
causes a carriage return and line feed (CRLF)

I
is an input command which waits for any command line and then executes it. An I or an I will not be accepted within this command. Its length is determined by how much of the line buffer is already being used by the upper level line.

i
is an input command specified ### single numbers. Any executable command entered will be rejected, except for 'I' alone, which allows subsequent input of a command line.

O outputs string through the VDU. The format for the string following 'O' is the same as for the '!' command. If both delimiters are present then CRKE is sent.

C
outputs strings formed by the '!' command. The sequence to be output, should be pointed to by A1 so control codes can be output, and the routine uses OSASCI so a carriage return forces a subsequent line feed.

* send the rest of the current line to the MOS. Thus, all the *FX, *SAVE, etc, commands may be used as usual. Note that some of the commands – notably, *FX0 and *HELP) return via a BRK instruction (to print a message) rather than an RTS. This means that control will be returned to the user no matter how deeply nested it was previously.

6. The Assembler

A single-line mnemonic converter (of true assembler) is provided in FMON for writing small machine code programs.

[enters the assembler; the following code will be stored from A1 onwards. The prompt for the assembler is the new address (which is stored in A1). Within the assembler, the commands are as follows (separated by ':' or terminated with a RETURN).

i) a 6502 mnemonic (e.g. LDA #$A (load accumulator immediate with the ASCII value of 'A')). The standard formats are used: # means immediate; (addr) is indirect; addr,X; addr,Y; (addr,X); (addr),Y, etc. Branch instructions may have an absolute address as parameter, or have a '+' or '-' relative parameter (e.g. 'BNE +3' means 'branch three bytes forwards'. Note that, as with all of FMON, the default base for numbers if hexadecimal – use '£' or '%' to enter decimal or binary numbers, respectively.

ii) number (a '' followed immediately by a valid number) changes the assembly address to that of the new number (i.e. the number is put into A1).

iii) }z works as in the non-assembler mode. That is, the current assembly address (A1) is stored in the UDNV named 'z'. This can be useful for looping instructions.

iv)] terminates assembler mode.

An error found by the assembler will be indicated by the message ^ERROR, positioned below the line, and pointing close to the error detected. This could be within a format, or a bad mnemonic, or incorrect use of separators. The prompt for the assembler is the current assembly address. If an error occurs in a line of assembler code including '{' (i.e. the first line) the error marker may not be accurate. It is possible to enter the assembler, give some assembly commands, and then exit, all on one line.

7. General Comments
7.1 Memory Usage
The line buffer is FF bytes long, and is set to start, initially, at 600. The monitor uses twelve zero page locations (70-7B), which are swapped into safe space inside FMON when 't', 'T' or 'G' are executed. This is in addition to the memory used by the UDV's which may be anywhere the user wishes. FMON is initially loaded into RAM at 1902, but may be relocated and saved to run from anywhere. If the monitor appears to be malfunctioning, the most likely explanation is that the program has been corrupted by unintentional pokes, etc.

7.2 Others
Typing RETURN on its own will repeat the whole of the last line entered. However, using CTRL-U or DELETE back to the beginning of a line, and then pressing RETURN will lead to unpredictable results.

Error messages cause execution to terminate, and control returns to the highest level of FMON (i.e. t the user). Note, in particular, that assembler errors return control to the main monitor. Warning messages are displayed, and execution continues.

Spaces are, in general, ignored, except where they separate numbers in the ':' and 'U' commands. They should not be inserted within assembler mnemonics.

Commands may be concatenated on one line to a maximum of FE characters.

A 'cold' start can be initiated by using the G command to re-enter FMON at the start address (which may be found using 'f'). This will clear the system variables, reset the screen width, and reset the UDV space to the end of the monitor (without clearing the old one). The 'warm' start entry point (not very useful) is three bytes further on.

APPENDIX 1 – MESSAGES

1. Escape
Results from pressing the ESCAPE key. After the message, control is returned to the monitor at the highest level. The ESCAPE key will not halt a user machine code loop – only BREAK will do this.

2. BRK at address ...

Caused when a machine code routine entered with the 'G' command executes a BRK instruction. This is useful for debugging, since the 6502 registers may be subsequently examined.

3. Delimiter

Occurs when the second delimited of a '!' or 'O' string is not found.

4. No such variable

Caused by trying to recover the value of an undefined UDNV or execute an undefined UDCV.

5. Variable?

Occurs when no name follows a '{','}',']' or 'X'.

6. Ascii?

Occurs when no ASCII character follows a '$'.

7. String?

Occurs when nothing follows '!' or 'O'.

8. ???

after a character means it is an unrecognised command.

9. Single number expected

implies incorrect input for the 'i' command.

10. Nested inputs

occurs when an 'i' or an 'I' was used in the input for the 'I' command.

11. Corrupted

occurs when an attempt is made to access a block of UDV's which has been noticeably corrupted.

12. ^ERROR

occurs when an error is encountered in the assembler. The '^' points to the region in which the error was detected. The errors can be invalid mnemonics, illegal formats, branch out of range, illegal delimiter.

APPENDIX 2 – COMMAND SUMMARY

1. Number Commands

number
hex

%number
binary

£number
decimal

$character
ASCII value

{character
UDNV

2. Executable commands
? prints A1, A2, A3 in hex

= prints A1 in hex

d prints A1 in decimal

b prints A1 in binary

~

,

>

<

+ A1 := A2+A1

- A1 := A2-A1

^ A1 := A2 AND A1

v A1 := A2 OR A1

x A1 := A2 EXOR A1

g A1 := A2>=A1 -> TRUE, FALSE (0=FALSE, FFFF=TRUE)

\ A1 := NOT A1

' (A2) := A1L; A2 := A2+1

" (A2) := A1L; (A2+1) := A1H; A2 := A2+2

A1L := (A1); A1H := (A1+1)

.
prints (A1); A1 := A1+1

P
prints (A2) to (A1); A1 := A1+1

P
prints (A1) to (A1+screenful); A1 :=

A1+1+screenful

A
prints in ASCII (A2) to (A1); A1 := A1+1

M
block moves A2 to A3 into A1 onwards

V
verifies A2 to A3 with A1 onwards

:
alters consecutive locations, beginning with A1

l
disassembles one instruction at A1; A1 := address of next instruction

L
repeats 'l' 20 times

G
jumps to A1 after setting the 6502 registers

R
prints the temporary 6502 registers

U
allows updating of the temporary registers

Q
PC := A1

t
traces one instruction from PC

T
continuous trace from PC until ESCAPE is pressed or a user breakpoint is reached

r
displays Min and Max

n
Min := A1

N
Max := A1

y
relocates program from A2 to A3 into A1, with query for each relocation

Y
as 'y', but without query

|
relocates FMON into A1 onwards

@
input line buffer := A1

f
displays the version number and addresses of FMON

S
searches for string at A1 from A2 to A3

!
defines string starting at A1

z
jumps to beginning of command line if A1 is non-zero

J
decrements counter and jumps to beginning of line if non-zero

j
counter := A1

}char UDNV char := A1

]char'command line' UDCV char := 'command line'

k
lists UDNV's then UDCV's

Xchar executes UDCV char

q
clears user variable space

m
displays user variable memory usage

u
user variable memory start := A1

K
displays user defined function keys

Z
displays resident ROMs

&
current ROM := low nibble of A1

/
null command

Hcommand prints address of the code for 'command'

h help: displays commands

W
screen width := A1 (0 for 20 column, 1 for 40 column, 2 for 80 column)

s
sends A1L to the VDU queue

;
sends A1L then A1H to the VDU queue

c sends CRLF to VDU queue

I
inputs command line

i
inputs single number

Ostring outputs 'string'

o
outputs the string pointed to by A1, which is in '!' format

*
sends rest of line to the MOS CLI

[
enter assembler

FMON V1.3

FMON V1.3 can run in the 6502 second processor, sideways RAM and the BBC Master. When running in the second processor or from sideways RAM the commands 'Z' and '&' have no effect as ROM switching cannot be achieved under these circumstances. When running in the Master the command 'K' has no effect as the Master is equipped with an equivalent command '*SHOW'. A sideways RAM version can be created by relocating FMON into a spare sideways RAM slot. This can then be entered at any time using the *FX142,n MOS command, where n is the slot number.

PAGE
32

